Metalloporphyrin-Catalyzed Reduction of Dioxygen by Ferrocene Derivatives Shunichi FUKUZUMI, * Seiji MOCHIZUKI, and Toshio TANAKA Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565 Metalloporphyrin-catalyzed reduction of dioxygen by ferrocene derivatives occurs efficiently \underline{via} outer-sphere electron transfer from ferrocene derivatives to metalloporphyrins (MTPP $^+$), followed by acid-catalyzed reduction of dioxygen by MTPP in the presence of perchloric acid in acetonitrile. Metalloporphyrin-catalyzed reduction of dioxygen has been extensively studied in the electrochemical systems, 1) and four-electron reduction of dioxygen to water has been achieved by using various dimeric metalloporphyrins 2) as well as monomeric indium porphyrins. 3) However, little is known of catalytic four-electron reduction of dioxygen by mild chemical reductants. We wish to report herein an efficient electron-transfer catalytic system for two-electron and four-electron reduction of dioxygen by ferrocene derivatives (Fc) in the presence of perchloric acid (HClO_4) in acetonitrile (MeCN) at 298 K. The catalytic mechanism will be elucidated by the kinetic study on the catalytic reactions as well as on the elementary reactions; the reduction of metalloporphyrins by Fc and the oxidation of the reduced metalloporphyrins by dioxygen in the presence of HClO_4 in MeCN, using the Marcus theory of electron transfer. 4) No oxidation of Fc (ferrocene [Fe(C_5H_5)₂] and 1,1'-dimethylferrocene [Fe-(C_5H_4 Me)₂]), has occurred in MeCN at 298 K, although the much stronger reductant, decamethylferrocene [Fe(C_5Me_5)₂], was gradually oxidized by dioxygen. The addition of HClO₄ to the Fc-O₂ system results in the sluggish oxidation of Fc to yield the corresponding ferricenium ion (Fc⁺).⁵) The rates of oxidation of Fc by dioxygen in the presence of HClO₄ were enhanced significantly by the addition of catalytic amounts of metalloporphyrins (MTPPClO₄: M = Co, Fe, Mn; TPP = tetraphenyl-porphyrin). The stoichiometry of the MTPP⁺-catalyzed reduction of dioxygen by Fc was determined from the spectral titration in Fig. 1, which shows that four equivalent [Fe(C_5H_4 Me)₂] and HClO₄ are consumed in the reduction of dioxygen to yield four-equivalent [Fe(C_5H_4 Me)₂]⁺, Eq. 1. When the CoTPP⁺-catalyzed four- $$4[Fe(C_5H_4Me)_2] + O_2 + 4H^+ \longrightarrow 4[Fe(C_5H_4Me)_2]^+ + 2H_2O$$ (1) MTPP+ electron reduction of dioxygen by an excess amount of $[Fe(C_5H_4Me)_2]$ was monitored by the increase in absrobance due to $[Fe(C_5H_4Me)_2]^+$, the formation of $[Fe(C_5H_4Me)_2]^+$ was separated in two steps; the first step corresponds to the initial two-electron reduction of dioxygen by $[Fe(C_5H_4Me)_2]$ to yield $[Fe(C_5H_4Me)_2]^+$ and H_2O_2 , which was followed by the further reduction of H_2O_2 by $[Fe-(C_5H_4Me)_2]$ with a 10^2 -fold slower rate than the first step. Thus, the catalytic oxidation of Fc with an excess amount of dioxygen may result only in the two-electron reduction of dioxygen to H_2O_2 and no further reduction of H_2O_2 to H_2O has occurred. Rates of oxidation of ferrocene derivatives by excess dioxygen, catalyzed by $\mathrm{MTPPClO}_4$ (M = Co, Fe, Mn) in the presence of HClO_4 were determined by the increase in the absorbance due to Fc^+ in the long-wavelength region (600-700 nm). The rate was expressed by second-order kinetics, showing first-order dependence on the concentrations of Fc and the catalyst MTPP^+ , Eq. 2. $$d[Fc^{+}]/dt = k_{obsd}[Fc][MTPP^{+}]$$ (2) The observed second-order rate constant $k_{\mbox{\scriptsize obsd}}$ remained constant with the change in the dioxygen or \mbox{HClO}_4 concentration. The $k_{\mbox{obsd}}$ values are listed in Table 1, together with the one-electron reduction potential ($E_{\mbox{red}}^0$) of MTPP⁺ and the one-electron oxidation potentials ($E_{\mbox{ox}}^0$) of ferrocene derivatives, determined by the cyclic voltammograms in MeCN. Electron transfer from Fc to CoTPP $^+$ is exothermic based on the redox potentials (Table 1), and thus the electron transfer occurs readily in the absence of dioxygen to yield Fc $^+$ and CoTPP, Eq. 3. The rates of electron transfer also $$Fc + CoTPP^{+} \longrightarrow Fc^{+} + CoTPP$$ (3) obeyed the second-order kinetics (Eq. 2), and the $k_{\rm obsd}$ values in the absence of dioxygen are also listed in Table 1 (the values in parentheses). The $k_{\rm obsd}$ values for the CoTPP⁺-catalyzed oxidation of Fc by dioxygen in the presence of HClO₄ are approximately 2-fold larger than those for the electron transfer from Fc to CoTPP⁺ in the absence of dioxygen (Table 1). Such a 2-fold difference indicates that the catalytic oxidation of Fc by dioxygen proceeds via the rate-determining electron transfer from Fc to CoTPP⁺, followed by the facile oxidation of Co^{II}TPP by dioxygen in the presence of HClO₄ to give Co^{III}TPPO₂H⁺· and the subsequent reduction of Co^{III}TPPO₂H⁺· by Fc to yield Fc⁺ and H₂O₂, accompanied by regeneration of CoTPP⁺ (Scheme 1). In fact, the electronic spectrum of CoTPP⁺ remained unchanged during Fig. 1. Plots of the concentration of $[Fe(C_5H_4Me)_2]^+$ formed in the CoTPP⁺-catalyzed oxidation of $[Fe(C_5H_4Me)_2]$ by dioxygen in the presence of $HClO_4$ in MeCN \underline{vs} . the ratio of $[Fe(C_5H_4Me)_2]$ to $[O_2]$ (0); $[O_2]$ = 2.6 x 10⁻³ mol dm⁻³, $[HClO_4]$ = 5.0 x 10⁻² mol dm⁻³, and \underline{vs} . the ratio of $[Fe(C_5H_4Me)_2]$ to $[HClO_4]$ (\bullet); $[O_2]$ = 1.3 x 10⁻² mol dm⁻³, $[HClO_4]$ = 5.0 x 10⁻³ mol dm⁻³. Table 1. Observed Second-Order Rate Constants ($k_{\rm obsd}$) for MTPP⁺-Catalyzed Oxidation of Ferrocene Derivatives (Fc) by Dioxygen in the Presence of HClO₄ and $k_{\rm obsd}$ for Electron Transfer from Fc to CoTPP⁺ in MeCN at 298 K, One-Electron Reduction Potentials ($E_{\rm red}^0$ vs. SCE) of MTPP⁺ and One-Electron Oxidation Potentials ($E_{\rm ox}^0$ vs. SCE) of Ferrocene Derivatives, and the Calculated Electron Transfer Rate Constants Based on the Marcus Theory | MTPP+ | E ⁰ red
—
V | Fc | E _{Ox} | k _{obsd} a) dm ³ mol ⁻¹ s ⁻¹ | $\frac{k_{\text{calcd}}^{b)}}{dm^3 \text{ mol}^{-1} \text{ s}^{-1}}$ | |--------------------|--|--|-----------------------|--|--| | | | | | | | | | | | (2.1×10^4) | | | | | [Fe(C ₅ H ₄ Me) ₂] | 0.26 | 1.0×10^{5} | 1 x 10 ⁵ | | | | | | (4.6×10^4) | | | | | [Fe(C ₅ Me ₅) ₂] | -0.08 | 1.1 x 10 ⁶ | 3×10^{7} | | | | | | (6.0×10^5) | | | | FeTPP ⁺ | 0.14 | [Fe(C ₅ H ₅) ₂] | 0.37 | 2.9×10^{6} | 1 x 10 ⁶ | | | | [Fe(C ₅ H ₄ Me) ₂] | 0.26 | 1.2×10^{7} | 1×10^{7} | | MnTPP+ | -0.15 | [Fe($C_5H_4Me)_2$] | 0.26 | 2.6×10^2 | 3 x 10 | | | | $[Fe(C_5Me_5)_2]$ | -0.08 | 1.4×10^{5} | 1 x 10 ⁵ | ^{a)}The values in parentheses are the $k_{\mbox{obsd}}$ values of electron transfer from Fc to CoTPP⁺ in the absence of dioxygen in MeCN at 298 K. ^{b)}Calculated based on the Marcus theory (Ref. 4) of outer-sphere electron transfer, see text. the catalytic oxidation of Fc by dioxygen in the presence of HClO_4 in MeCN. According to Scheme 1, the observed rate constant in the presence of dioxygen k_{obsd} should correspond to $2k_{\mathrm{et}}$. The facile oxidation of CoTPP by dioxygen in the presence of HClO_4 was confirmed independently by measuring the rise and decay of the absorption bands due to CoTPP (λ_{max} 412 nm) or CoTPP⁺ (λ_{max} 434 nm), respectively. The second-order rate constant was determined as 1.0 x 10^4 dm³ mol⁻¹ s⁻¹ in the presence of HClO_4 (3.0 x 10^{-4} mol dm⁻³), and the value increased linearly with an increase in the HClO_4 concentration.⁷) The reported values of self-exchange rate constants for ferrocene derivatives $(5.3 \times 10^6 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1})^8)$ and metalloporphyrins $(20, 1 \times 10^9, \text{ and } 3.2 \times 10^3, \text{ for } \text{Co}, ^9)$ Fe, 10 and Mn, 11 respectively) together with the one-electron redox potentials in Table 1 constitute a satisfactory basis for accounting for the experimental kinetic data when considered in light of the Marcus theory of outersphere electron transfer. 4 , 12) The calculated values $(k_{\text{calcd}} = 2k_{\text{et}})$ are also listed in Table 1, where the observed rate constants k_{obsd} agree with the calculated values within ± 1 in the logarithm unit, except for the $[\text{Fe}(C_5\text{Me}_5)_2]$ -CoTPP+ system. 13) Taking account for uncertainties in the estimates of the self-exchange rates, the agreement between the observed and calculated rate constants demonstrates that the electron transfer from Fc to MTPP+ in Scheme 1 proceeds by an outer-sphere mechanism. ## References - 1) R. A. Forshey, T. Kuwana, N. Kobayashi, and T. Osa, Adv. Chem. Ser., <u>201</u>, 601 (1982); H. Jahnke, M. Schonborn, and G. Zimmerman, Top. Curr. Chem., <u>61</u>, 133 (1976). - 2) J. P. Collman, P. Denisevich, Y. Konai, M. Marrocco, C. Koval, and F. C. Anson, J. Am. Chem. Soc., 102, 6027 (1980); R. R. Durand, Jr., C. S. Bencosme, J. P. Collman, and F. C. Anson, ibid., 105, 2710 (1983); C. K. Chang, H. Y. Liu, and I. Abdalmuhdi, ibid., 106, 2725 (1984); J. P. Collman, N. H. Hendricks, K. Kim, and C. S. Bencosme, J. Chem. Soc., Chem. Commun., 1987, 1537. - 3) J. P. Collman and K. Kim, J. Am. Chem. Soc., 108, 7847 (1986). - 4) R. A. Marcus, Ann. Rev. Phys. Chem., 15, 155 (1964). - 5) S. Fukuzumi, K. Ishikawa, and T. Tanaka, Chem. Lett., 1986, 1. - 6) S. Fukuzumi, K. Ishikawa, K. Hironaka, and T. Tanaka, J. Chem. Soc., Perkin Trans. 2, 1987, 751. - 7) Under the experimental conditions to determine the $k_{\rm obsd}$ values for the CoTPP⁺-catalyzed oxidation of Fc, the rate of electron transfer from Fc to CoTPP⁺ is much slower than the rate of oxidation of CoTPP by dioxygen in the presence of HClO₄ (> 1 x 10⁻² mol dm⁻³). - 8) E. S. Yang, M.-S. Chan, and A. C. Wahl, J. Phys. Chem., <u>84</u>, 3094 (1980). - 9) D. F. Rohrbach, E. Deutsch, W. R. Heineman, and R. F. Pasternack, Inorg. Chem., 16, 2650 (1977). - 10) R. F. Pasternack and E. G. Spiro, J. Am. Chem. Soc., <u>100</u>, 968 (1978). - 11) R. Langley and P. Hambright, Inorg. Chem., 24, 1267 (1985). - 12) The k_{calcd} (= $2k_{\text{et}}$) value was calculated by the relation, k_{et} = $(k_{11}k_{22}K_{12}f)^{1/2}$ and log f = $(\log K_{12})^2/[4\log(k_{11}k_{22}/Z^2)]$, where k_{11} and k_{22} are the self-exchange rate constants of Fc and MTPP⁺ (Refs. 8-11), K_{12} is the equilibrium constant of electron transfer, which is obtained from E_{ox}^0 and E_{red}^0 values in Table 1 by using the relation, $\log K_{12} = (-2.3\text{RT/F})(E_{\text{ox}}^0 E_{\text{red}}^0)$, and Z is the frequency factor, taken as 1 x 10^{11} dm³ mol⁻¹ s⁻¹ (Ref. 4). The work terms were neglected since the reactants and products include neutral species. - 13) The smaller $k_{\mbox{obsd}}$ value than the $k_{\mbox{calcd}}$ value may be suggestive of nonadiabatic behavior of the system, see: R. M. Nielson, M. N. Golovin, G. E. McManis, and M. J. Weaver, J. Am. Chem. Soc., $\underline{110}$, 1745 (1988). (Received August 29, 1988)